Search results for "Sun: activity"

showing 10 items of 21 documents

Bright Hot Impacts by Erupted Fragments Falling Back on the Sun: Magnetic Channelling

2016

Dense plasma fragments were observed to fall back on the solar surface by the Solar Dynamics Observatory after an eruption on 7 June 2011, producing strong EUV brightenings. Previous studies investigated impacts in regions of weak magnetic field. Here we model the $\sim~300$ km/s impact of fragments channelled by the magnetic field close to active regions. In the observations, the magnetic channel brightens before the fragment impact. We use a 3D-MHD model of spherical blobs downfalling in a magnetized atmosphere. The blob parameters are constrained from the observation. We run numerical simulations with different ambient density and magnetic field intensity. We compare the model emission i…

010504 meteorology & atmospheric sciencesField (physics)FOS: Physical sciencesAstrophysics01 natural sciencesAtmosphereSettore FIS/05 - Astronomia E AstrofisicaSun: activity0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetic pressureSun: magnetic field010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSun: coronaAstronomy and AstrophysicsSun: UV radiation Supporting material: animationPlasmaCoronal loopAstronomy and AstrophysicRam pressureMagnetic fieldStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space Physics
researchProduct

Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA

2019

The Interface Region Imaging Spectrograph (IRIS) has observed bright spots at the transition region footpoints associated with heating in the overlying loops, as observed by coronal imagers. Some of these brightenings show significant blueshifts in the Si iv line at 1402.77 A (logT[K] = 4.9). Such blueshifts cannot be reproduced by coronal loop models assuming heating by thermal conduction only, but are consistent with electron beam heating, highlighting for the first time the possible importance of non-thermal electrons in the heating of non-flaring active regions. Here we report on the coronal counterparts of these brightenings observed in the hot channels of the Atmospheric Imaging Assem…

010504 meteorology & atmospheric sciencesSun: activity Sun: corona Sun: UV radiation Astrophysics - Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysicsElectron01 natural sciences0103 physical sciencesmedicineAstrophysics::Solar and Stellar AstrophysicsIris (anatomy)010303 astronomy & astrophysicsSpectrographSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)PhysicsAstronomy and AstrophysicsCoronal loopThermal conductionmedicine.anatomical_structureAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceCoronal planePhysics::Space PhysicsCathode rayAstrophysics::Earth and Planetary Astrophysics
researchProduct

Investigating the Response of Loop Plasma to Nanoflare Heating Using RADYN Simulations

2018

We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff (EC) deposit energy in the lower TR and chromosphere, causing blueshifts (up to approximately 20 kilometers per second) in the IRIS Si IV lines, which thermal conduction cannot repro…

Electron density010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysicsElectron01 natural sciencesSun: activity0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSun: transition region010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSun: coronaAstronomy and AstrophysicsPlasmaCoronal loopAstronomy and AstrophysicThermal conductionNanoflaresIntensity (physics)Astrophysics - Solar and Stellar Astrophysicsline: profileSpace and Planetary SciencePhysics::Space PhysicsThe Astrophysical Journal
researchProduct

In Situ Generation of Transverse Magnetohydrodynamic Waves from Colliding Flows in the Solar Corona

2018

This research has received funding from the UK Science and Technology Facilities Council (Consolidated Grant ST/K000950/1) and the European Union Horizon 2020 Research and Innovation Programme (grant agreement No. 647214). V.M.N. acknowledges the support of the BK21 plus program through the National Research Foundation funded by the Ministry of Education of Korea. Transverse magnetohydrodynamic (MHD) waves permeate the solar atmosphere and are a candidate for coronal heating. However, the origin of these waves is still unclear. In this Letter, we analyze coordinated observations from Hinode/Solar Optical Telescope (SOT) and Interface Region Imaging Spectrograph (IRIS) of a prominence/corona…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesF300NDASEnergy fluxF500magnetohydrodynamics (MHD)01 natural sciencesSolar prominenceSun: activity0103 physical sciencesQB AstronomyAstrophysics::Solar and Stellar AstrophysicsCoronal rainwavesactivity [Sun]Magnetohydrodynamic drive010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesPhysicsSun: coronaoscillations [Sun]Sun:oscillationsAstronomy and AstrophysicsPlasmaSun: filaments prominencesMagnetic fieldComputational physicsTransverse planeQC PhysicsSpace and Planetary SciencePhysics::Space PhysicsWavesfilaments prominences [Sun]MagnetohydrodynamicsThe Astrophysical Journal
researchProduct

Guided flows in coronal magnetic flux tubes

2018

There is evidence for coronal plasma flows to break down into fragments and to be laminar. We investigate this effect by modeling flows confined along magnetic channels. We consider a full MHD model of a solar atmosphere box with a dipole magnetic field. We compare the propagation of a cylindrical flow perfectly aligned to the field to that of another one with a slight misalignment. We assume a flow speed of 200 km/s, and an ambient magnetic field of 30 G. We find that while the aligned flow maintains its cylindrical symmetry while it travels along the magnetic tube, the misaligned one is rapidly squashed on one side, becoming laminar and eventually fragmented because of the interaction and…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysics01 natural sciencesPhysics::Fluid DynamicsSun: activity0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic drive010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSun: coronaAstronomy and AstrophysicsLaminar flowPlasmaMechanicsAstronomy and AstrophysicMagnetic fluxMagnetic fieldDipoleAstrophysics - Solar and Stellar AstrophysicsFlow velocitySpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct

The role of radiative losses in the late evolution of pulse-heated coronal loops/strands

2012

Radiative losses from optically thin plasma are an important ingredient for modeling plasma confined in the solar corona. Spectral models are continuously updated to include the emission from more spectral lines, with significant effects on radiative losses, especially around 1 MK. We investigate the effect of changing the radiative losses temperature dependence due to upgrading of spectral codes on predictions obtained from modeling plasma confined in the solar corona. The hydrodynamic simulation of a pulse-heated loop strand is revisited comparing results using an old and a recent radiative losses function. We find significant changes in the plasma evolution during the late phases of plas…

Physics010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsCoronal loopPlasma01 natural sciencesSpectral lineComputational physicsPulse (physics)Cooling rateSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSun: X-rays gamma rays Sun: corona Sun: UV radiation Sun: activity radiation mechanisms: thermal hydrodynamicsPhysics::Plasma Physics0103 physical sciencesPhysics::Space PhysicsRadiative transferX-rays gamma rays Sun: corona Sun: UV radiation Sun: activity radiation mechanisms: thermal hydrodynamics [Sun]010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPlasma density
researchProduct

Statistical Signatures of Nanoflare Activity. I. Monte Carlo Simulations and Parameter-space Exploration

2019

Small-scale magnetic reconnection processes, in the form of nanoflares, have become increasingly hypothesized as important mechanisms for the heating of the solar atmosphere, for driving propagating disturbances along magnetic field lines in the Sun's corona, and for instigating rapid jet-like bursts in the chromosphere. Unfortunately, the relatively weak signatures associated with nanoflares places them below the sensitivities of current observational instrumentation. Here, we employ Monte Carlo techniques to synthesize realistic nanoflare intensity time series from a dense grid of power-law indices and decay timescales. Employing statistical techniques, which examine the modeled intensity…

Physics010504 meteorology & atmospheric sciencesMonte Carlo methodFOS: Physical sciencesAstronomy and AstrophysicsMagnetic reconnectionAstrophysicsParameter space01 natural sciencesCoronaMagnetic fieldNanoflaresmethods: numerical – methods: statistical - Sun: activity – Sun: chromosphere – Sun: corona – Sun: flaresAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science0103 physical sciencesPhysics::Space PhysicsAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsChromosphereIntensity (heat transfer)Solar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciences
researchProduct

EUV FLICKERING OF SOLAR CORONAL LOOPS: A NEW DIAGNOSTIC OF CORONAL HEATING

2016

A previous work of ours found the best agreement between EUV light curves observed in an active region core (with evidence of super-hot plasma) and those predicted from a model with a random combination of many pulse-heated strands with a power-law energy distribution. We extend that work by including spatially resolved strand modeling and by studying the evolution of emission along the loops in the EUV 94 angstrom and 335 angstrom channels of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Using the best parameters of the previous work as the input of the present one, we find that the amplitude of the random fluctuations driven by the random heat pulses increases …

Physics010504 meteorology & atmospheric sciencesPixelSun: coronaExtreme ultraviolet lithographyFOS: Physical sciencesAstronomy and AstrophysicsPlasmaCoronal loopLight curve01 natural sciencesComputational physicsCore (optical fiber)AmplitudeAstrophysics - Solar and Stellar AstrophysicsSun: activitySpace and Planetary Science0103 physical sciences010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Randomness0105 earth and related environmental sciencesThe Astrophysical Journal
researchProduct

Large-amplitude Quasiperiodic Pulsations as Evidence of Impulsive Heating in Hot Transient Loop Systems Detected in the EUV with SDO/AIA

2019

Short heat pulses can trigger plasma pressure fronts inside closed magnetic tubes in the corona. The alternation of condensations and rarefactions from the pressure modes drive large-amplitude pulsations in the plasma emission. Here we show the detection of such pulsations along magnetic tubes that brighten transiently in the hot 94A EUV channel of SDO/AIA. The pulsations are consistent with those predicted by hydrodynamic loop modeling, and confirm pulsed heating in the loop system. The comparison of observations and model provides constraints on the heat deposition: a good agreement requires loop twisting and pulses deposited close to the footpoints with a duration of 0.5 min in one loop,…

Physics010504 meteorology & atmospheric sciencesSun: coronaAstrophysics::High Energy Astrophysical PhenomenaExtreme ultraviolet lithographyFOS: Physical sciencesAstronomy and Astrophysics01 natural sciencesComputational physicsLoop (topology)AmplitudeAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSun: activityQuasiperiodic functionPhysics::Space Physics0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsTransient (oscillation)010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciences
researchProduct

Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties

2017

In this work we investigate the thermal structure of an off-limb active region (AR) in various non-flaring areas, as it provides key information on the way these structures are heated. In particular, we concentrate on the very hot component (>3 MK) as it is a crucial element to distinguish between different heating mechanisms. We present an analysis using Fe and Ca emission lines from both the Solar Ultraviolet Measurement of Emitted Radiation (SUMER) on board the Solar and Heliospheric Observatory (SOHO) and the EUV Imaging Spectrometer (EIS) on board Hinode. A data set covering all ionization stages from Fe X to Fe XIX has been used for the thermal analysis (both differential emission …

Physics010504 meteorology & atmospheric sciencesSun: coronaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsPlasmaAstronomy and AstrophysicSun: UV radiation01 natural sciencesPower lawAstrophysics - Solar and Stellar AstrophysicsSun: activitySpace and Planetary ScienceIonization0103 physical sciencesThermalAtomic modelEmission spectrumSpectroscopyThermal analysis010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)techniques: spectroscopic0105 earth and related environmental sciences
researchProduct